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LETTER TO THE EDITOR 

A new derivation of the Boltzmann transport equation 

John M Blatt and Alex H Opie 
Applied Mathematics Department, University of New South Wales, Kensington, NSW, 
Australia 

Received 28 March 1974 

Abstract. A new way of deducing the Boltzmann transport equation from the Liouville 
equation is presented. The major advantage of the new method is that it provides for genera- 
lization by means of less restrictive assumptions. 

Many authors have described methods of deducing the Boltzmann transport equation 
from the Liouville equation (these include Kirkwood 1946, Bogoliubov 1946, Born and 
Green 1949, Hollinger and Curtiss 1960, Hoffman and Green 1965). We present a new 
way which has the following advantages : 

(i) The basic statistical assumption is made explicitly, on the distribution function 
p(r , p 1 ,  . , , , rN, p N  , t )  in the Liouville equation, rather than implicitly. 

(ii) The origin of the time irreversibility is obvious. 
(iii) The theory provides for generalization by means of less restrictive assumptions. 

We start by assuming an initial state of the ensemble, at time t = 0, without statistical 
This is the most important feature. 

correlations : 

N '  
p(YI,Pl,r2,P2,...,rN,pN,t = 0) = - vNgo(rl JJl)gO(r2?P2). . . go(r,,p,) (1) 

where g,(r,p) is an arbitrary function normalized by 

where V is the volume of the container. The time development of p is governed by the 
Liouville equation 

where the bracket is a Poisson bracket, and H ,  is the N-particle hamiltonian. 
Let At be a time interval which is (a) appreciably longer than the duration of one 

collision, and (b) much shorter than the mean free time between collisions, with p at 
t = 0 given by (1); p at time t = At is not of the form 

(4) 
N !  
V -& 1 ,PI 9 AtMrz ,Pz 9 At) . . . g(r, 9 P N  9 At) 

no matter what we choose to be the function g(r,p, At). 

L113 



L114 letter to the Editor 

However, we now ask : How should g(r ,p ,  At)  be chosen so that (4) represents the best 
approximation to the true distribution function p at time t = At? This becomes a sensible 
question as soon as we decide what we mean by ‘best.’ 

Our criterion of ‘best’ is: For all physical quantities Q which are sums of quantities 
depending upon the coordinates of each particle separately, ie, for all Q of form 

N 

Q = dr i>Pih  
i =  1 

the expectation value of Q, 

J 

should be the same for the exact p at time t = At, as for the approximate p of form (4). 
Without going into details (which will appear in a separate publication) it follows 

that the ‘best’ g is given by 

where p is the exact distribution at time At. 

possible to deduce a value for the change 
By making approximations suitable to a dilute gas in the evaluation of (7), it is 

Ag = A t )  -go(r,P). (8 ) 

The approximation allows evaluation of the integral (7) over configurations in which 
either ( a )  particle 1 suffers no collision in time At, or ( b )  particle 2 suffers one binary 
collision in time At, but excludes configurations leading to ternary or even higher-order 
collisions in that time. Iff is then defined by 

(9) 
N 

f ( r ,p ,  At )  = ,g(r,p, At )  

and we approximate : 

then the result is the Boltzmann equation in its usual form. 
The origin of irreversibility is clear from this derivation. The replacement of the 

exact N-partide distribution function p by the approximate form (4) clearly throws 
away information about the state of the ensemble at time t = At, information which is 
essential to the recovery of the exact initial state. 

The major advantage of this new derivation is that the basic idea is not restricted 
to  the ansatz (4), but can be used with a more general ansatz, for example, one which 
includes pair correlation functions h(r, , p l ,  r ,  , p 2 ,  t )  explicitly. This then allows de- 
rivation of equations more general, and more accurate, than the Boltzmann equation. 
The detailed calculations are not simple, and the results are not such as one would be 
likely to obtain by purely intuitive arguments similar to those of Boltzmann. These 
results will be reported later. 
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